

B. Tech 3th Semester (Mechanical Engineering)
Lesson Plan: Strength of Materials-I (PCC-ME-302/21)

S. NO	Content to be Covered	Lect. No.
UNIT-1		
1	Discussion of CO-PO of SOM stress- strain and deformation of solids :Introduction, stress, strain, types of stresses, hooks law, young's modulus, shear stress, shear modulus	L-1
2	Stress -strain curve for elastic and brittle material, factor of safety	L-2
3	Analysis of bars of varying section, superposition,	L-3
4	Numerical on composite section, free body diagram,	L-4
5	Elastic constant and their relationship: Poisson ratio, bulk modulus, volumetric strain, concept of complimentary shear stress.	L-5
6	Thermal stresses, thermal stresses in composite bar	L-6
7	Principal stresses and principal planes, analytical method for determining the stresses on inclined plane	L-7
8	Numerical on principal stress and strain	L-8
9	Mohr circle of stresses, numerical solution by Mohr's circle	L-9
UNIT-2		
10	Transverse Loading on Beams and Stresses in Beams : shear force and bending moment diagram,types of beams: simply supported, cantilever, overhanging, continuous, fixed beam. types of loading: point load, uniformly distributed load, uniformly varying load, sign convention	L-10
11	SFD and BMD for cantilever beam for a point load and numerical	L-11
12	SFD and BMD for cantilever beam for a uniformly distributed load and numerical	L-12
13	SFD and BMD for simply supported beam for a point load and uniformly distributed load	L-13
14	Numerical on SFD and BMD on simply supported beam, overhang, determination of point of contra-flexure	L-14
15	SFD and BMD for simply supported beam carrying Uniformly varying load.	L-15
16	SFD and BMD diagram subjected to couple, SFD and BMD diagram subjected to inclined load	L-16
17	Bending stresses in beam : concept of pure bending, Theory of bending of beams with assumption,	L-17
18	Bending stresses, neutral axis, moment of resistance, section modulus, bending stresses in different symmetrical section.	L-18
19	Numerical on bending stresses	L-19
20	Shear stress distribution in beams : shear stress in beams,	L-20
21	shear stress in different section	L-21
22	Numerical on shear stress in different sections.	L-22
UNIT-3		
23	Deflection of beams : Introduction, Relation between slope, deflection and radius of curvature, Deflection of beam by double integration: Deflection of simply supported beam carrying a point load at the center	L-23

24	Numerical on uniformly distributed load	L-24
25	Macaulay's method: deflection of simply supported beam with eccentric point load, uniformly distributed load.	L-25
26	Numerical on Macaulay's method	L-26
27	Deflection and slope of cantilever beam.	L-27
28	Moment Area method for slope and deflection of beam,	L-28
29	Castiglao's theorem, numerical	L-29
30	Maxwell theorem, numerical	L-30
31	Conjugate beam and strain energy method	L-31
	UNIT-4	
32	Torsion: derivation of shear stress produced in circular shafts subjected to torsion, torque transmitted by solid shaft, hollow shaft	L-32
33	Torque transmitted by stepped shaft, numerical	L-33
34	deflection of shaft fixed at both ends, Numerical	L-34
35	Helical spring: Types of springs, closed coil and helical spring, Expression for max stress induced in the wire	L-35
36	Expression for deflection of spring and stiffness of spring	L-36
37	Carriage springs, numerical	L-37
	UNIT-5	
38	Thin Cylinders, Spheres and Thick Cylinders: Introduction, stresses in thin cylindrical vessels subjected to internal pressure, circumferential stress	L-38
39	Efficiency of joints, wire wound thin cylindrical shell, numerical	L-39
40	Numerical	L-40
41	Thin spherical shells, numerical	L-41
42	Stresses in thick cylinders shell	L-42
43	Stresses in compound cylinders	L-43
44	Numerical	L-44
45	Thick spherical shells	L-45
46	Numerical	L-46