

Lesson Plan
PCC-ME-501-21
HEAT AND MASS TRANSFER

B. Tech (Mechanical Engineering) V Semester

S. No.	Topic	Lecture Number
1	Introduction to three modes of heat transfer	1
2	Derivation of heat balance equation- Steady state one dimensional solution for conduction, heat transfer in Cartesian	2
3	Derivation of heat balance equation- Steady state one dimensional solution for conduction, heat transfer in cylindrical	3
4	Derivation of heat balance equation- Steady state one dimensional solution for conduction, heat transfer in spherical geometry	4
5	critical insulation thickness	5
6	lumped system approximation	6
7	Biot number	7
8	heat transfer through extended surfaces	8
9	One-dimensional conduction solutions for unsteady state heat transfer-approximate solution by the use of Heissler charts	9
10	Heat convection, basic equations such as continuity equation and momentum equation	10
11	Introduction to boundary layer, laminar and turbulent flow, external and internal flows (flow over flat plate and circular pipes)	11
12	Natural convective heat transfer	12
13	Dimensionless parameters for forced and free convection heat transfer	13
14	Correlations for forced and free convection- Approximate solutions to laminar boundary layer equations (momentum and energy) for both internal and external flow	14
15	Estimating heat transfer rates in laminar flow situations using appropriate correlations for free convection (flat plate and circular pipes)	15
16	Estimating heat transfer rates in laminar flow situations using appropriate correlations for forced convection (flat plate and circular pipes)	16

17	Interaction of radiation with materials, definitions of radiative properties	17
18	Stefan Boltzmann's law	18
19	black and gray body radiation	19
20	Wein's law	20
21	Kirchhoff's law	21
22	Calculation of radiation heat transfer between surfaces using radiative properties, view factors and the radiosity method	22
23	Calculation of radiation heat transfer between surfaces using radiative properties, view factors and the radiosity method	23
24	Types of heat exchangers, uses of different types of heat exchangers	24
25	dimensionless numbers for heat exchanger design	25
26	Analysis and design of heat exchangers using both LMTD and ϵ - NTU methods	26
27	Analysis and design of heat exchangers using both LMTD and ϵ - NTU methods	27
28	Basic of Boiling and Condensation heat transfer	28
29	Pool boiling curve	29
30	introduction to heat pipe	30
31	Introduction to numerical methods	31
32	Finite difference approximation	32
33	Steady state numerical methods	33