

J.C. Bose University of Science & Technology, YMCA Faridabad

**(NAAC Accredited “A” Grade University of State Govt. established by Haryana
State Legislative Act No.21 of 2009)**

Department of Life Sciences

(w.e.f. 2020)

Scheme and Syllabi

M.Sc. Biotechnology

(SEMESTER- I and II)

(w.e.f 2020)

ANNEXURE-I

Scheme of M.Sc. Biotechnology										
SEMESTER-I										
Sr. No.	Course Code	Subject	Teaching Hours per Week			Maximum Marks			Credits	Category Code
			L	T	P	Int	Ext	Total		
1	MLS-101	Cell Biology	4			25	75	100	4	DCC
2	MLS-102	Structure and Functions of Biomolecules	4			25	75	100	4	DCC
3	MLS-103	General Microbiology	4			25	75	100	4	DCC
4	MLS-104	Molecular Biology	3			25	75	100	3	DCC
5	MLS-105	Biostatistics	3			25	75	100	3	DCC
6	MLS-106	Lab Course- I (Based on MLS 101-102)			6	30	70	100	3	DCC
7	MLS-107	Lab Course- II (Based on MLS 103- 105)			6	30	70	100	3	DCC
8	MLS-108	MOOC*								
Total Marks								700	24	

DCC: Discipline Core Course; MOOC: Massive Online Open Course, L: Lecture; T: Tutorial; P: Practical

*The students have to pass at least one mandatory MOOC course with 4–6 credits (12–16 weeks) from the list given on the Swayam portal or the list given by the department/ university from 1st semester to 3rd semester as notified by the university.

Instructions to the students regarding MOOC

1. Two types of courses will be circulated: branch specific and general courses from the website <https://swayam.gov.in> in the month of June and November every year for the forthcoming semester.

2. The department coordinators will be the course coordinators of their respective departments.

3. Every student has to pass a selected MOOC course within the duration ass specified below:

Programme Duration for M.Sc./M.Tech./MA/MBA: Sem. I to Sem. III

The passing of a MOOC course is mandatory for the fullfilment of the award of the degree of concerned programme.

4. A student has to register for the course for which he is interested and eligible which is approved by the department with the help of course coordinator of the concerned department.

5. A student may register in the MOOC course of any programme. However, a UG student will register only in UG MOOC courses and a PG student will register in only PG MOOC courses.

6. The students must read all the instructions for the selected course on the website, get updated with all key dates of the concerned course and must inform his/her progress to their course coordinator.

7. The student has to pass the exam (online or pen–paper mode as the case may be) with at least 40% marks.

8. The students should note that there will be a weightage of Assessment/quiz etc. and final examination appropriately as mentioned in the instructions for a particular course.

9. A student must claim the credits earned in the MOOC course in his/her marksheet in the examination branch by forwarding his/her application through course coordinator and chairperson.

ANNEXURE-II

SEMESTER-II											
Sr. No.	Course Code	Subject	Teaching Hours per week			Maximum Marks			Credits	Category Code	
			L	T	P	Int	Ext	Total			
1	MLS-201	Biotechniques	4			25	75	100	4	DCC	
2	MLS-202	Metabolism	4			25	75	100	4	DCC	
3	MLS-203	Bioinformatics and Biomolecular Modelling	3			25	75	100	3	DCC	
4	MLS-204	Genetic Engineering	3			25	75	100	3	DCC	
5	MLS-205	Environment and Ecology	4			25	75	100	4	DCC	
6	MLS-206	Lab Course- I (Based on MLS 201-202)			6	30	70	100	3	DCC	
7	MLS-207	Lab Course- II (Based on MLS 203- 205)			6	30	70	100	3	DCC	
8	MLS-208	Audit Course**	2	0	0	25	75	100	0	AUD	
	Total Marks							800	24		

Semester-I

Course Code: MLS-101

Subject: Cell Biology

No. of Credits: 04

L P

4 0

Maximum Marks: 100

Theory Exam: 75

Sessional: 25

Course Objectives: To understand structural and functional aspects of cells and basic mechanisms underlying cell signaling and cell division

Unit-I

Biomembranes: Molecular composition and arrangement, functional consequences, Transport Recapitulation of the plasma membrane; diffusion, active transport and pumps, uniports, symports and antiports, Donnan equilibrium; ion movements and cell function: acidification of cell, organelles and stomach, Maintenance of cellular pH; cell excitation; bulk transport; Receptor mediated endocytosis, Transepithelial transport

The Extra Cellular Matrix and Cell interactions, Cell walls, The ECM and cell-matrix, interactions, Cell-cell interactions: adhesion junctions, tight junctions, gap junctions,

plasmodesmata Ca^{++} Independent and Ca^{++} Homophilic cell-cell adhesion

Unit-II

Cytoskeleton and cell movement: Structure and organization of actin filaments, Actin, myosin and cell movements, Structure and dynamic organizations of microtubules, Microtubule motors and movement, Intermediate filaments, Cilia and flagella, Cell matrix adhesion, Integrins, Collagen, Non-collagen components, Auxin and cell expansion, Cellulose fibril synthesis and orientation, Protein sorting and transport, Protein uptake into the ER, Membrane proteins and Golgi sorting, Mechanism of vesicular transport, Lysosomes, Molecular mechanism of secretory pathway.

Unit-III

Cell cycle: The eukaryotic cell cycle, Regulators of cell cycle progression, The events of M phase, Meiosis and fertilization, Genome organization, Chromosomal organization of genes and non-coding DNA, Mobile DNA, Morphological and functional elements of eukaryotic chromosomes, Cell – Cell signalling, Signaling molecules and their receptors, Function of cell surface receptors, Pathways of intracellular signal transduction, Signaling networks

Unit-IV

Cell death and cell renewal: Programmed cell death, Stem cells and the maintenance of adult tissues, Embryonic stem cells and therapeutic cloning, Biology of Cancer, The development and causes of cancer, Oncogenes, Tumor suppressor genes, Molecular approaches to cancer treatment, Biology of Ageing

Course Outcomes:

CO1. Students will know about the cell and its biology, which will help the students to understand the origins of cells and the generation of cell diversity, as well as the common features of cellular structure and function –how they obtain energy, synthesize new molecules, communicate, proliferate and survive.

CO2. Students will understand the structures and purposes of basic components of cell cycle.

CO3. Students will understand the cellular components underlying cell movements and cytoskeleton.

CO4. The understanding of cells is used for learning the processes such as, cell death and cell renewal, stem cells and biology of cancer etc.

Suggested Readings:

1. Molecular Cell, Biology, J. Darnell, H. Lodish and D. Baltimore Scientific American Book, Inc., USA.
2. Molecular Biology of the Cell, B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J.D. Watson. Garland Publishing Inc., New York
3. Cell and Molecular Biology by De Robertis
4. Molecular Cell Biology, Lodish et al., W.H. Freeman and Company (8th Ed. 2016)

Semester-I**Course Code: MLS-102****Subject: Structure and Functions of Biomolecules****No. of Credits: 04****L P****4 0**

Maximum Marks: 100

Theory Exams: 75

Sessional: 25

Course Objectives: To learn about structure and bonding in water, its significance as biological solvent, study of carbohydrates, Aminoacids, proteins, lipids, nucleic acids

Unit-I

Water : Structure, hydrogen bonding, as a biological solvent, ionization and fitness of the aqueous environment for living organisms; pH; Buffers; Henderson-Hasselbalch equation; Physiological buffers.

Carbohydrates : Structure, occurrence and biological importance of important monosaccharides, oligosaccharides and polysaccharides; Ring structures and anomeric forms; mutarotation; sugar derivatives; reactions of monosaccharides; Glycosaminoglycans; Heteropolysaccharides of bacterial and algal cell walls; Proteoglycans; Glycoproteins; Lectins.

Unit-II

Amino acids and Proteins : Common structural features, classification by R group, Zwitter ion structures, acid-base properties and titration curves of amino acids; Essential amino acids; Separation of amino acids; Peptides including biologically active peptides; Classification and different structural levels (Primary, secondary, tertiary & quaternary) of proteins; Ramachandran plot; Determination of amino acid composition of proteins; Characteristic amino acid composition of proteins; Determination of amino acid sequences of proteins; Effect of amino acid sequence on the function of a protein and stability of α -helix; Protein folding and role of chaperons in protein folding; Chemical synthesis of polypeptides.

Unit-III

Lipids : Classification, structures, nomenclature and properties of fatty acids; Essential fatty acids; Acylglycerols; Characterization of fats-Saponification value, iodine number, rancidity, acid value, Reichert-Meissel number; Structure and properties of different types of phospholipids and sphingolipids (sphingomyelins, cerebrosides & gangliosides); Structure and functions of prostaglandins, Prostacyclins, Thromboxanes, and Leukotrienes; Terpenes of biological significance; Sterols and bile acids.

Unit-IV

Nucleic Acids: Structure and properties of purines and pyrimidine bases; Nucleosides and Nucleotides; Biologically important nucleotides; Nucleic acids as the genetic material – experimental evidences; Chargaff's rules; The covalent backbone of nucleic acids; Double helical model of DNA structure; Structural polymorphism of DNA (A,B and Z-DNA) and RNA; Denaturation & annealing of DNA; Biological functions of nucleotides; Chemical synthesis of oligonucleotides.

Course Outcomes:

After the successful completion of the course the learner would be able to
CQ.1.comprehend the importance of chemical foundation in living organisms

CQ.2.analyzethe various types of weak interactions between the biomolecules and water

CQ.3.correlate how the large biomolecules such as proteins, carbohydrates, lipids, nucleic acids are made from the simple precursors

CQ.4. interpret the structure-functionrelationships ofthe proteins, carbohydrates, lipids, and nucleic acids

Suggested Readings:

- i) *Liljas, Anders* **Textbook of structural biology** New Jersey: World Scientific, cop. 2009
- 1) Berg.J.M, Tymoczko.J.L, Stryer, L. Biochemistry. 6 th ed. Freeman, 2006.
- 2) D.A. Harris. Bioenergetics at a glance. John Willey and Sons Ltd, 1995.
- 3) Nelson.D.L, Cox. M. M. Lehninger's .Principle of Biochemistry. 6 th ed. Freeman, 2009
- 4) Voet and Voet. Biochemistry.4th edition, John Wiley, 2010.

Semester-I**Course Code: MLS-103****Subject: General Microbiology****No. of Credits: 04****L P****4 0**

Maximum Marks: 100

Theory Exam: 75

Sessional: 25

Course Objectives: To study the fungi, bacteria, virus, microbial; classification and taxonomy, Sterilization methods and microbial ecology

Unit – I

Fungi: Introduction and classification: Thallus organisation, cell structure and cell wall composition, Nutrition, reproduction (vegetative, asexual and sexual), life cycles, Classification of fungi. and Economic importance of fungi. History and contributions of various scientists to this science with particular reference to the contribution of the following scientists

A.V.Leeuwenhoek, Louis Pasteur, Edward Jenner, Robert Koch, Alexander Fleming and Joseph Lister.

Morphology and arrangement of bacterial cells, Bacterial- flagella, Fimbriae, capsule, spores and cysts, cell walls of Gram +ve and Gram –ve bacteria, Nutritional requirements and nutritional categories of microorganisms, Physical factors for growth, Enrichment culture techniques for isolation of microorganisms, pure culture techniques and preservation techniques, study of growth curve, measurement of growth.

Unit – II

Distinguishing features of bacteria, viruses, fungi, protozoa, algae. Introduction to Microbial Classification and Taxonomy, Taxonomic ranks, Various approaches for identification of microorganisms including molecular approaches; Gram (+) and Gram (-) bacteria of medical and industrial importance. Characteristics of Mycobacterium and Mycoplasmas; photosynthetic prokaryotes (purple bacteria, green bacteria, cyanobacteria) and actinomycetes; brief account of different types of viruses with special reference to lambda phage, herpes, adenoviruses and retroviruses, viroids and prions; fungi and algae of industrial importance.

Unit – III

Sterilization methods- dry heat, moist heat, radiations, filtration, and gaseous sterilization. Validation of sterilization processes; Factors affecting antimicrobial action, Mode of action of antimicrobial agents, Antibiotics and their mode of action, Microbiological assay of antibiotics (ampicillin, streptomycin, tetracycline etc.), Disinfectants, Types of toxins and their mode of action.

Unit – IV

Microbial ecology: Biogeochemical cycles; Physical environment: Microenvironment & Niche, Microorganisms and ecosystems. Soil microbiology: Types & functions of microorganisms in soil. Microorganism associations with vascular plants (Mycorrhizae, Rhizobia), Microorganism growth in Foods. Methods to control food spoilage, Food borne diseases

Course Outcomes:

CO1. Student will understand the diversified branches of microbiology

CO2. Student will know the aspects of microbial growth and physiology

CO3. Students will learn about the morphology and physiological characteristics of different groups of microorganisms

CO4. This course will make the students to understand various sterilization methods

Suggested Readings:

- 1) Jacquelyn G. Black. Microbiology-Principles and explorations 8 th edition: Publisher John Wiley & Sons 2012
- 2) Prescott, Harley and Klein- Microbiology-7 th edition; Publisher: McGraw Hill science 2007 Gerard J. Tortora, Berdell, R. Funke, Christine L. Case
- 3) Microbiology: An Introduction. 11th edition, Publisher: Benjamin Cummings. 2012
- 4) Atlas RM. Principles of Microbiology. 2nd edition. 1997
- 5) WM.T.Brown Publishers.2.Black JG. Microbiology: Principles and Explorations. 7th edition. Prentice Hall, 2008

Semester-I

Course Code: MLS-104

Subject: Molecular Biology

No. of Credits: 03

L P

3 0

Maximum Marks: 100

Theory exam: 75

Sessional: 25

Course Objectives:

To make students understand the complex molecular mechanisms occurring in cell and the applications of molecular technologies.

Unit-I

DNA Replication: Prokaryotic and eukaryotic DNA replication, Mechanics of DNA replication, enzymes and accessory proteins involved in DNA replication and DNA repair.

Transcription: Prokaryotic transcription, Eukaryotic transcription, RNA polymerase, General and specific transcription factors, Regulatory elements in mechanisms of transcription regulation, Transcriptional and post-transcriptional gene silencing, Modifications in RNA: 5"-Capformation, Transcription termination, 3"-end processing and polyadenylation, Splicing, Editing, Nuclear export of mRNA, mRNA stability

Unit-II

Translation: Prokaryotic and eukaryotic translation, the translation machinery, Mechanisms of initiation, elongation and termination, Regulation of translation, co- and post translational modifications of proteins.

Protein Localization: Synthesis of secretory and membrane protein, Import into nucleus, mitochondria, chloroplast and peroxisomes, Receptor mediated endocytosis, **Oncogenes and Tumor Suppressor Genes:** Viral and cellular oncogenes, tumor suppressor genes from humans, Structure, Function and mechanism of action of pRB and p53 tumor suppressor proteins

Unit-III

Antisense and Ribozyme Technology: Molecular mechanism of antisense molecules, inhibition of splicing, polyadenylation and translation, disruption of RNA structure and capping, Biochemistry of ribozyme; hammer head, hairpin and other ribozymes, strategies for designing ribozymes, Applications of Antisense and ribozyme technologies

Homologous Recombination: Holliday junction, gene targeting, gene disruption, FLP/FRT and Cre/Lox recombination, RecA and other recombinases **Molecular Mapping of Genome:** Genetic and physical maps, physical mapping and map-based cloning, choice of mapping population, Simple sequence repeat loci, Southern and fluorescence in situ hybridization for genome analysis, Chromosome micro dissection and micro cloning.

Course Outcomes:

After the successful completion of the course the learner will get complete idea about the

CQ1. DNA replication, recombination and repair, transcription and translation

CO2. Students will be aware of protein localization

CO3. Students will understand the biology and application of antisense and ribozyme technologies

Suggested Readings:

1. Molecular Biology of the Gene, J.D. Watson, N.H. Hopkins, J.W. Roberts, J.A Steitz and A.M. Weiner. The Benjamin/Cummings Pub. Co., Inc., California.
2. Molecular Cell Biology, J. Darnell, H. Lodish and D. Baltimore Scientific American Books, Inc., USA
3. Introduction to Practical Molecular Biology, P.D. Dabre, John Wiley & Sons Ltd., New York.
4. Molecular Biology LabFax, T.A Brown (Ed.), Bios Scientific Publishers Ltd., Oxford.

Semester-I**Course Code: MLS-105****Subject: Biostatistics****No. of Credits: 03****L P****3 0**

Maximum Marks: 100

Theory exam: 75

Sessional: 25

Course Objectives:

The paper develops concepts about types of data observed in biological experiments, its handling and processing. It develops concepts of hypothesis and formulation of experiments. It gives understanding of various statistical operations needed to carryout and process the biological data.

Unit-I

Types of data, Collection and Graphical representation of data, Measures of central tendency: Mean, Median, Mode, Quartile, and Percentile. Measures of Dispersion: Range, Variance, Standard deviation, Coefficient of Variation, Correlation and Regression.

Unit-II

Probability and its applications: Laws of Addition and Multiplication, Compound Probability, Bayes theorem. Probability distributions: Binomial, Poisson and Normal distributions and their applications.

Testing of hypothesis: Parameter and Statistic, Sampling distribution and Standard error, Null and Alternative hypotheses, Simple and composite hypotheses, Two types of errors, Level of significance and Power of the test, One tailed and two tailed tests.

Unit-III

Tests of significance: t and Z tests for mean and proportion for one and two samples, Chi square test of goodness of fit and independence. F test, Analysis of variance for one way and two way classification, Elementary ideas of Designs of Experiments

Important statistical softwares and their applications

Course Outcomes:

After the successful completion of the course the learner will get complete idea about the

CQ.1. An ability to apply knowledge of statistics to design and conduct experiments, as well as to analyze and interpret data related to domain of biology

CQ.2. An ability to apply the knowledge of basic mathematical & statistical tools used in biological research/ biotechnology in industry and research lab

CQ.3. An ability to understand the principle and application of Differential Calculus, Differential Equations and various Computational Techniques

Suggested Readings:

1. Daniel, Wayne W. (2007) Biostatistics: A Foundation for Analysis in Health Sciences 10th Edition, Wiley Series.
2. Pagano, Marcello and Gauvreau, Kimberlee (2000) Principles of Biostatistics, 2nd Edition,

CRC Press

3. Chap T. Le, Introductory Biostatistics (2017), Wiley India Pvt Ltd.
4. P.N. Arora and P. K. Malhan, Biostatistics, Himalaya Publishing House
5. B. K. Mahajan, Methods in Biostatistics: For Medical Students and Research Workers, JPB

Semester-I

Course Code: MLS-106

Subject: Lab Course-1

No. of Credits: 03

L P

0 6

Maximum Marks: 100

Theory exam: 70

Sessional: 30

- 1.** Preparation of mitotic and meiotic chromosomes
- 2.** Calculation of morphometric data and preparations of idiogram.
- 3.** Determination of chiasma frequency and terminalization coefficient
- 4.** Preparation of polytene chromosomes and mapping
- 5.** Titration of amino acids
- 6.** Colorimetric determination of pK
- 7.** Model building using space filling/ball and stick models
- 8.** Reactions of amino acids, sugars and lipids
- 9.** Isolation of DNA and protein
- 10.** Quantization of Proteins and Sugars
- 11.** Analysis of oils-iodine number, saponification value, acid number
- 12.** UV, Visible, Fluorescence and IR spectroscopy, Absorption spectra
- 13.** Separation techniques - Centrifugation, Chromatography (Gel permeation, Ion exchange, TLC etc. and Electrophoresis

Semester-I

Course Code: MLS-107
Subject: Lab Course-II
No. of Credits: 03

Maximum Marks: 100
Theory Exam: 70
Sessional: 30

L P
0 6

1. Isolation of genomic DNA
2. Southern blotting
3. RFLP analysis
4. Isolation of RNA
5. Isolation of polyA +RNA
6. Northern blotting
7. Preparation of probes
8. In vitro Transcription
9. In vitro translation
10. Metabolic labeling of proteins and immune precipitation
11. Descriptive statistics: Systemic tabular summarization of data (before analysis), measures of central tendency, measures of dispersion (using calculators).
12. Correlations (Product Moment and Spearman's Rank Correlation) and Linear Regression Tests of significance (Mean, Standard Deviation, proportion, Correlation Coefficient)
13. Chi Square Test of Goodness of fit, test of independence of attributes, Analysis of Variance (One way and Two way)
14. Preparation of Graphs and statistical calculations using software

ANNEXURE-II

SEMESTER-II											
Sr. No.	Course Code	Subject	Teaching Hours per week			Maximum Marks			Credits	Category Code	
			L	T	P	Int	Ext	Total			
1	MLS-201	Biotechniques	4			25	75	100	4	DCC	
2	MLS-202	Metabolism	4			25	75	100	4	DCC	
3	MLS-203	Bioinformatics and Biomolecular Modelling	3			25	75	100	3	DCC	
4	MLS-204	Genetic Engineering	3			25	75	100	3	DCC	
5	MLS-205	Environment and Ecology	4			25	75	100	4	DCC	
6	MLS-206	Lab Course- I (Based on MLS 201-202)			6	30	70	100	3	DCC	
7	MLS-207	Lab Course- II (Based on MLS 203- 205)			6	30	70	100	3	DCC	
8	MLS-208	Audit Course**	2	0	0	25	75	100	0	AUD	
	Total Marks							800	24		

Annexure -B

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA FARIDABAD DEPARTMENT OF LIFE SCIENCES

M.Sc. (Biotechnology) Syllabus, Semester-II

Course Code: MLS-201

Maximum Marks: 100

Subject: Biotechniques

Theory exam- 75

No. of credits: 4

Sessional-25

L P

4 0

Course Objectives: To learn various techniques used in biological sciences and their applications in different research works. The course also aims to make students learn about modern instruments for various analytical works.

Unit-I

Microscopy: Light Microscopy – Magnification, resolving power, Numerical aperture, Limit of Resolution, Bright field, Phase contrast, Fluorescence microscopy. Principle and applications of Electron Microscopy (SEM and TEM), Cryogenic Electron Microscopy, Confocal Microscopy, Atomic Force Microscopy, Polarised Light Microscopy

Centrifugation Techniques: Principle of sedimentation, centrifugation, types of rotors, general applications of centrifugation, ultracentrifugation, analytical centrifugation, preparative centrifugation, precautions and safety aspects

Unit-II

Spectrophotometric Techniques: Electromagnetic spectrum, Beer Lambert's Law. Photometry, UV/VIS Spectrophotometry, Infrared spectroscopy, Raman SpectroscopyCircular dichroism (CD), Molecular structure determination using X-ray diffraction, Xray crystallography and NMR, Different types of mass spectrometry and surface plasmon resonance method

Unit-III

Principles and different types of ELISA, Radioimmune Assay (RIA), Immunoprecipitation, flowcytometry, Genomic Insitu Hybridisation (GISH). Chromosome walking, Chromosome painting. Chromosome Banding Techniques.

Unit-IV

Principles and applications of Chromatography. Ion exchange chromatography, Gel filtration chromatography, Hydrophobic interaction chromatography, Affinity chromatography, GC, HPLC.

Electrophoresis-Agarose Gel electrophoresis, Polyacrylamide Gel Electrophoresis (Native, SDS PAGE), 2-Dimenional Gel electrophoresis,

Course Outcomes:

CO-1- To impart knowledge and application of various bioanalytical techniques

CO-2- Students will learn centrifugation and electrophoretic techniques involved in isolation, purification and analysis of biomolecules.

CO-3- Students will learn spectrophotometric techniques for qualitative and quantitative analyses of biomolecules.

CO-4- Students will gain the knowledge and will analyses the biophysical techniques for the Isolation, Identification and Quantification of Biomolecules

Suggested Readings:

1. Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology, Andreas Hofmann and Samuel Clokie (8th Edition).
2. NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry, Harald Ganther (3rd Edition)
3. Crystallography Made Crystal Clear - Gale Rhodes, academic Press (3rd Edition).
4. Molecular Biology and Biotechniques: the fundamental approach- Aga Syed Sameer (2nd Edition).
5. Biotechniques- Theory and Practice, S.V.S Rana, Rastogi Publication (1st Edition).
6. Principles of Immunodetection and Immunotechniques: Preview and Emerging Applications, Shelza Thakur, Navnit Kumar Mishra, Hardeep Singh Tuli, Anil K. Sharma (1st Edition)

Semester-II

Course Code: MLS-202

Subject: Metabolism

No. of credits: 4

L P
4 0

Maximum Marks: 100
Theory exam- 75
Sessional-25

Course Objectives: Students will learn about different metabolic pathways related to carbohydrate, proteins, nucleic acid and fatty acids, including its significance and regulation in biological system.

Unit I

An overview of metabolism including catabolism and anabolism, Bioenergetics, ATP synthesis, Electron transport chain, Phosphorylation, Oxidative phosphorylation, Substrate phosphorylation and photophosphorylation.

Unit II

Carbohydrates – Fermentation, Pathways and regulations of glycolysis (Entner-Doudoroff pathway), citric acid cycle, pentose phosphate pathway, gluconeogenesis, glycogenesis and glycogenolysis, glyoxylate pathways, Cori cycle, anaplerotic reactions, glucuronate pathway. Energetics of metabolic cycle.

Unit III

Fatty acid metabolism including catabolism and anabolism. Ketone bodies metabolisms, keto acids, fatty acid synthesis and oxidation, cholesterol synthesis and regulation, Biosynthesis and degradation of tri-acyl-glycerol and phospholipids, diseases caused by abnormal metabolic pathway.

Unit IV

Catabolism of amino acids, glucogenic and ketogenic amino acids, disorders of amino acid metabolism. Biosynthesis of urea and urea cycle, related disorders, Nucleotides, de novo synthesis and breakdown of purine and pyrimidine nucleotides, regulation, salvages pathway, inhibitors of nucleotide metabolism, disorders of nucleotide metabolism and Vitamins and role in metabolic synthesis.

Course Outcomes:

CO-1- To comprehend various biochemical changes in living system.

CO-2- Recognize how the catabolic and anabolic breakdown of the substances is associated with the release during synthesis of biomolecules

CO-3- Assessing the role of different inhibitors in metabolic pathways.

CO-4- Provide deeper insight in the understanding, application and regulation of various metabolic pathways

Suggested Readings:

1. Biochemistry and Molecular Biology, Elliott and Elliott, Oxford University press, New York, USA (4th edition).
2. Harper's Illustrated Biochemistry, Murray, Granner and Rodwell, McGraw Hill, New York, USA. (28th edition)
3. Biochemistry, Voet and Voet, John Wiley (4th edition).
4. Nelson DL Cox, MM Lehninger's Principal of Biochemistry (7th edition).
5. Biochemistry, Satyanarayana U, Chakrapani U, Elsevier (5th edition).
6. Fundamentals of Biochemistry, JL Jain, Sanjay Jain, Nitin Jain, S Chand (4th edition)

Semester-II

Course Code: MLS-203

Subject: Bioinformatics and Biomolecular Modelling

No. of credits: 3

L P
3 0

Maximum Marks: 100
Theory exam- 75
Sessional-25

Course Objectives: This course is meant to impart knowledge to students for analysing and interpreting vast biological data using computational techniques. The course is designed in such a way that it gives a walkthrough of the major aspects of bioinformatics such as the development of databases and computationally derived hypothesis. We will focus on DNA and protein sequence databases and analysis, secondary structures and 3D structural analysis.

Unit I

Introduction to bioinformatics and Biological databases: Introduction to genomics and proteomics databases- nucleic acid sequence databases; GenBank, UCSC, ENSEMBL, EMBL, DDBJ, protein sequence databases; Swiss-Prot, PDB, BLAST, PSI- BLAST (steps involved in use and interpretation of results), BLAST vs FASTA, file formats- FASTA, ClustalW, Databank search- data mining, data management and applications.

Unit II

Sequence alignment: Nucleic acid and protein sequence information, composition and properties, Pair-wise sequence alignment, gaps, gap-penalties, scoring matrices, PAM 250, BLOSUM 62, global and local sequence alignment, similarity searching (FASTA and BLAST), Identification of genes in genomes, primer designing, Phylogenetic analysis with reference to nucleic acids and protein sequences using PHYLIP, DISTANCES, and GROWTREE, Identification of ORFs, Identification of motifs.

Unit III

Protein structure and Molecular Interaction: Introduction to protein structure, secondary structure prediction, tertiary structure prediction, protein modelling; principles of homology and comparative modelling, threading, structure evaluation and validation and Modelling, applications; Molecular docking, Autodoc.

Applications of Bioinformatics in various fields: Environment, biotechnology, molecular biology, neurobiology, agriculture, drug designing, biomedical genome medicines, medical microbiology.

Course Outcomes:

CO-1- To get introduced to the basic concepts of Bioinformatics and its significance in Biological data analysis

CO-2- To gain knowledge about various Biological databases that provide information about nucleic acids and protein

CO-3- Understanding of the concept of pairwise sequence alignment and tools for pairwise alignment, also students will learn about Multiple Sequence Alignment, its significance,

algorithms and tools used for MSA.

CO-4- The students will learn about biological macromolecular structures and structure prediction methods

Suggested Readings:

1. Bioinformatics: Sequence and Genome Analysis, David W. Mount, Cold Spring Harbor Laboratory Press, New York, USA (2nd Edition).
2. Bioinformatics: A primer, P. Narayan, New Age International Publishers (1st Edition).
3. Bioinformatics Principles and Applications, Harshawardhan P. Bal, Tata McGraw- Hill Publishing Company (1st Edition).
4. Understanding Bioinformatics, Marketa Zvelebil and Jeremy O. Baum, Garland Science (1st Edition).
5. Bioinformatics: Methods and Applications (Genomics, Proteomics and Drug Discovery), S. C. Rastogi, Namita Mendiratta and Parag Rastogi, Prentice Hall of India (4th Edition).
6. Fundamental Concepts of Bioinformatics, Dan E. Krane and Michael L. Raymer Pearson Education (1st Edition).
7. Bioinformatics For Dummies, Jean Michael Claverie and Cerdic Notredame, Wiley India Pvt Ltd (2nd Edition).

Semester-II

Course Code: MLS-204

Subject: Genetic Engineering

No. of credits: 3

L P
3 0

Maximum Marks: 100
Theory exam- 75
Sessional-25

Course Objectives: To understand the basic concepts in Gene cloning; to acquaint the students to versatile tools and techniques employed in genetic engineering and recombinant DNA technology; and to appraise them about applications of genetic engineering as well as genome editing tools.

Unit-I

Recombinant DNA technology: Restriction and modification enzymes; Restriction Digestion-Partial as well as complete digestion, Linkers and adaptors. Vectors - Plasmids, Cosmids, bacteriophage and other viral vectors, bacterial and yeast artificial chromosomes; Expression vectors, shuttle vectors. Plasmid incompatibility. Introduction of DNA into living cells. Selectable and Screenable markers. Selection of transformed and recombinant cells. Insertional inactivation of genes. Ti plasmid and Agrobacterium mediated Gene transfer. Functions of different of Vir genes.

Unit-II

The construction of cDNA and Genomic libraries. Genomics and its application, Expressed sequence tags, Human genome project- strategies and implications, Gene therapy: principles, strategies. DNA sequencing methods, Maxam and Gilbert's chemical and Sanger's chain termination methods, and Pyrosequencing.

Polymerase chain reaction and its application in research. TA cloning. Real time/quantitative PCR.

Unit-III

Differential gene expression profiling by Microarray. Differential protein expression profiling. The Southern, Northern, Western blotting. Analysis of DNA-Protein Interactions- Electromobility shift assay, ChIP assay, DNase Foot printing. Protein-protein interactives study: The yeast two hybrid system, Random amplification of polymorphic DNA (RAPD), RFLP (Restriction fragment Length Polymorphism), Site-directed mutagenesis.

Course Outcomes:

CO-1- Provide deeper insight in the understanding, application of the tools of restriction digestion and modification system as well as cloning.

CO-2- To illustrate creative use of modern tools and techniques for manipulation and analysis of genomic sequences

CO-3- To train students in strategizing research methodologies employing genetic engineering techniques.

CO-4- To expose students to methods and application of DNA sequencing in biotechnological research

Suggested Readings:

1. Gene Cloning and DNA analysis- an introduction - T. A Brown, Wiley-Blackwell (7th Edition)
1. Molecular Biotechnology: Principles and applications of Recombinant DNA- Bernard R Glick, Jack J Pasternak (3rd Edition)
2. Principles of Biotechnology- Christina A. Crawford, Grey House Publishing (1st Edition)
3. Principles of Gene Manipulation and Genomics- Primrose, S. B., & Twyman, Wiley-Blackwell (7th Edition)
4. Biotechnology-David P. Clark, Nanette J. Pazdernik, Elsevier Science (2nd Edition)
5. Plant Biotechnology and Genetic Engineering- C M Govil, Ashok Aggarwal, Jitender Sharma, PHI Learning (1st Edition)

Semester-II

Course Code: MLS-205

Subject: Ecology and Environment

No. of credits: 4

L P
4 0

Maximum Marks: 100
Theory exam- 75
Sessional-25

Course Objectives: The objective of this course to make awareness among the young students about the surrounding environment, basic concepts of ecology, the impact of climate change and its mitigation, biodiversity and conservation.

UNIT I

Environment: Introduction to ecology and basic environmental concepts; Physical environment, biotic environment, laws and limiting factors, ecological models, biotic and abiotic interactions, climate and soil pattern of world.

Habitat ecology: Concept of habitat and niche; niche width and overlap; fundamental and realized niche; resource partitioning; character displacement and major habitat types of the subcontinent.

UNIT II

Population ecology: Characteristics of a population; population growth curves; population dynamics and regulation; life history strategies (R and K selection), age structured populations, Competition and coexistence, intra-specific and inter-specific interactions, scramble and contest competition model, mutualism and commensalism, prey-predator interactions, Species interactions; Types of interactions, interspecific competition, herbivory, carnivory, pollination, symbiosis; Mechanisms of litter fall decomposition and climatic factors associated with decomposition.

UNIT III

Community ecology: Nature, structure and attributes of community, analysis of communities (analytical and synthetic characters), levels of species diversity and its measurement, edges and ecotones, ecological succession: types, mechanisms, changes involved in succession, concept of climax, models of succession, ecological adaptations.

Ecosystem ecology: Structure and function, energy flow through ecosystems, food webs, biogeochemical cycles, resilience of ecosystem, primary production and methods of measurement, global pattern and controlling factors, ecosystem management/restoration.

UNIT IV

Environment and Development: Environmental Challenges faced by India and the world; Climate change and global warming, different types of pollution – air, water and soil, energy crisis and resource conservation, National and global environmental education programs and organisations, Environment Impact Assessment (EIA), Environmental Laws and policies.

Biodiversity: Assessment, international conventions, changing environment. conservation and management, biodiversity act and related sustainable development, natural resource management in changing environment

Course Outcomes:

CO-1- Students will be exposed to the fundamental aspects of ecology.

CO-2- They will get idea about the interactions and interdependence of abiotic and biotic factors in nature. They will also learn about the impact of anthropogenic activities on the environment and need for conservation

CO-3- Student will develop an understanding of the ecological principles that link individuals at populations, community and ecosystem levels.

CO-4- Students will learn about the environmental issues faced by India and world, various national and global organisations working towards environment protection and biodiversity conservation.

Suggested Readings:

1. Ecology: From Individuals to Ecosystems, Michael Begon, Colin R. Townsend, John L. Harper, Wiley-Blackwell (3rd Edition).
2. Ecology: Principles and Applications, J. L. Chapman and Michael Reiss, Cambridge University Press, U.K. (1st Edition).
3. Ecology and Environment, P.D. Sharma, Rastogi Publications, India (13th Edition).
4. A text book of Ecology, R. S. Ambasht and N. K. Ambasht, CBS Publ. & Distr. New Delhi. (15th Edition).
5. Fundamentals of Ecology, E. P. Odum and G. W. Barrett, Brooks/Cengage Learning India Pvt. Ltd., New Delhi (5th Edition).
6. Concepts of Ecology, E. J. Kormondy, Prentice Hall of India, New Delhi (4th Edition).
7. Ecology, N. S. Subrahmanyam and A.V.S.S. Sambamurty, Narosa Publishing House, New Delhi (2nd Edition).
8. Ecology: Theory and Applications, P. Stiling, PHI Learning Pvt. Ltd. New Delhi (4th Edition).
9. Essentials of Ecology and Environmental Sciences, S V. S. Rana, PHI Learning Pvt. Ltd. New Delhi (4th Edition).

Semester-II

Course Code-MLS -206

Subject: Lab Course-I (Based on MLS 201-202)

No. of Credits-3

L P

0 6

1. Isolation of total protein by acetone precipitation from biological sample and its quantitation by Bradford method.
2. Analysis of proteins. Native PAGE and SDS PAGE, Visualization of protein bands by Coomassie staining
3. Determination of molecular weight of a given protein by Gel filtration
4. To check the validity of Lambert-Beer's law
5. Determination of concentration and purity of DNA by spectrophotometer
6. Estimation of RNA by orcinol method
7. Estimation of DNA by DPA method
8. Determination of starch in plant tissues
9. Determination of total soluble sugars by ferricyanide method
11. Quantitative determination of free amino acid content in germinating seeds
12. Estimation of beta carotene in carrots by spectrophotometry
13. Estimation of ascorbic acid in lemon juice by calorimetric method

*****Addition or deletion of the lab experiments can be done as per the availability of resources in lab.***

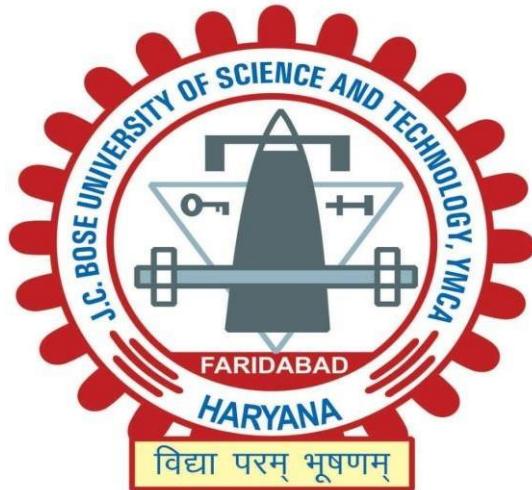
Semester-II

Course Code-MLS -207

Subject: Lab Course-II (Based on MLS 203-205)

No. of Credits-3

L	P
0	6


1. PCR amplification of DNA from unknown source
2. Preparation of restriction enzyme digests of DNA samples
3. Determination of nucleotide sequence of DNA by dideoxy chain termination method
4. To study physical and chemical characteristics of soil and water samples collected from different locations
5. Assessment of density, frequency and abundance of plants/ animals in a community using various techniques i.e., transect, quadrat etc.
6. To determine the dissolved oxygen/free carbon dioxide/nutrients, hardness, alkalinity pH and conductivity of water samples collected from different locations
7. To record the biotic and abiotic components of water in different ecosystems
8. Determination of species diversity index and importance value index of local vegetation
9. Retrieve sequences from different Nucleic acid and protein databases
10. Data mining for sequence analysis by use of Bioinformatics' tools
11. Pair wise and multiple alignments of sequences using different softwares
12. Evolutionary studies / phylogenetic analysis of DNA and protein sequences

*****Addition or deletion of the lab experiments can be done as per the availability of resources in lab.***

J.C. Bose University of Science & Technology, YMCA Faridabad

(NAAC Accredited "A" Grade University of State Govt. established by Haryana State Legislative
Act No.21 of 2009)

Department of Life Sciences (w.e.f.2021)

Syllabi for M.Sc. Biotechnology (Semester III and IV)

PROGRAM OUTCOMES OF PG PROGRAM OF FACULTY OF SCIENCES

PO1	Knowledge	Capable of demonstrating comprehensive disciplinary knowledge gained during course of study
PO2	Research Aptitude	Capability to ask relevant/appropriate questions for identifying, formulating and analyzing the research problems and to draw conclusion from the analysis
PO3	Communication	Ability to communicate effectively on general and scientific topics with the scientific community and with society at large
PO4	Problem Solving	Capability of applying knowledge to solve scientific and other problems
PO5	Individual and Team Work	Capable to learn and work effectively as an individual, and as a member or leader in diverse teams, in multidisciplinary settings.
PO6	Investigation of Problems	Ability of critical thinking, analytical reasoning and research-based knowledge including design of experiments, analysis and interpretation of data to provide conclusions
PO7	Modern Tool usage	Ability to use and learn techniques, skills and modern tools for scientific practices
PO8	Science and Society	Ability to apply reasoning to assess the different issues related to society and the consequent responsibilities relevant to the professional scientific practices
PO9	Life-Long Learning	Aptitude to apply knowledge and skills that are necessary for participating in learning activities throughout life
PO10	Ethics	Capability to identify and apply ethical issues related to one's work, avoid unethical behavior such as fabrication of data, committing plagiarism and unbiased truthful actions in all aspects of work
PO11	Project Management	Ability to demonstrate knowledge and understanding of the scientific principles and apply these to manage projects

PROGRAM SPECIFIC OUTCOMES (PSOs)

The program specific outcomes (PSO 's) are the statement of competencies/abilities that describes the knowledge and capabilities of the post-graduate will have by the end of program studies.

After successful completion of M. Sc. Biotechnology, the students will be able to

PSO1	The detailed functional knowledge of theoretical concepts and experimental aspects of Biotechnology.
PSO2	To integrate the gained knowledge with various contemporary and evolving areas in Life sciences like Genetic Engineering, Forensic sciences etc.
PSO3	To understand, analyze, plan and implement qualitative as well as quantitative analytical synthetic and phenomenon-based problems in Biotechnology
PSO4	Provide opportunities to excel in academics, research or Industry

SEMESTER- III

Sr. No.	Course Code	Subject	Teaching Hours per week			Maximum Marks			Credits	Category Code
			L	T	P	Int	Ext	Total		
1	MBT-301	Plant Biotechnology	4			25	75	100	4	DCC
2	MBT-302	Animal Biotechnology	4			25	75	100	4	DCC
3	MBT-303	Immunology	4			25	75	100	4	DCC
4	MBT-304	Genetics	4			25	75	100	4	DCC
5	MBT-305	Lab Course-I (Based on MBT301-302)			6	30	70	100	3	DCC
6	MBT-306	Lab Course-II (Based on MBT303-304)			6	30	70	100	3	DCC
7	MBT-307	Seminar				25		25	1	DCC
8	XXX	*Open Elective Course	3	0	0	25	75	100	3	OEC
Total								725	26	

DCC-Discipline core course

*OEC – Open Elective Course- The students have to choose one Open elective course related to another branch of Science/Engg. /Other discipline required for enhancing professional performance as provided by the department/university-

OES-301A- Waste Management in Daily Life

OES-302A- Environmental Conservation

OCH 307A- Chemistry for sustainable Development

L- Lecture; T-Tutorial, P-Practical

SEMESTER-IV

Sr. No.	Course Code	Subject	Teaching Hours per week			Maximum Marks			Credits	Category Code
			L	T	P	Int 1	Ext	Total		
1	MBT-401	Enzymology and Bioprocess Engineering	4			25	75	100	4	DCC
2	MBT-402	Environmental Biotechnology	4			25	75	100	4	DCC
3	MBT-403	Genomics, Proteomics and Metabolomics	4			25	75	100	4	DCC
4	MBT-404	Lab Course-I (Based on MBT401)			6	30	70	100	3	DCC
5	MBT-405	Lab Course-II (Based on MBT402-403)			6	30	70	100	3	DCC
6	MBT-406	Project Report	0	0	12	30	70	100	6	
Total								600	24	

CourseCode:MBT-301

MaximumMarks:100

Theoryexam:75

Sessional: 25

Subject:PlantBiotechnology

No.ofcredits: 4

L P

4 0

Course Objectives: The goal of this course is to introduce biotechnological methods in plants and to expose the students to advanced knowledge in the field and consolidate the knowledge already acquired in other course by handling of classical and modern techniques in plant biotechnology.

UnitI

Plant genome organization, Organization and expression of chloroplast genome and mitochondrial genome, Cytoplasmic male sterility, Intergenomic interaction, Conventional methods of crop improvement, selection, mutation, polyploidy and clonal selection.

UnitII

History of Plant Tissue Culture, Sterilization methods, Media preparation, Plant Growth Regulators, Micropropagation, Callus culture, Cell Culture, Protoplast Culture and Fusion, Organogenesis and Somatic embryogenesis. Application of tissue culture for crop improvement in agriculture, horticulture and forestry. Seed storage proteins, Methods for Plant Conservation, Haploid production: - Anther, Pollen, Embryo and ovule culture and their applications. Somaclonal variations.

UnitIII

Secondary metabolite: Basic biosynthetic pathways, Role of Sec. Metabolites: Defense, Communication in insects, plants, animals, Chemical Ecology, Interaction between organisms using secondary metabolites, Production of bioactive secondary metabolites by plant tissue culture.

UnitIV

Genetic engineering of plants for bacteria, fungi, virus, pest and herbicide resistance. Production of viral antigens and peptide hormones in plants, biodegradable plastics in plants. Applications of secondary metabolites: Isolation and characterization—drug development, Biopesticides, growth regulators, Biofertilizers, Value addition via biotransformation, Biocatalyst, Bioremediation, Bio fuels. Genetically Modified Organism, Regulatory Guidelines for Recombinant DNA Technology.

Suggested Readings:

1. Razdan MK (2019) An introduction to Plant Tissue culture. Oxford & IBH Publishing Co, New Delhi. 3rd Edition
2. CM Govil, Aggarwal A, Sharma J (2017) Plant Biotechnology and Genetic Engineering. PHI Learning Pvt. Ltd. 1st Edition
3. Slater, Scott NW, Fowler MR (2008) Plant Biotechnology: The Genetic Manipulation of Plants. Oxford University Press. 2nd Edition
4. Buchanan BB, Gruissem W, Jones RL (2015) Biochemistry & Molecular Biology of Plants. John Wiley & Sons. 2nd Edition
5. Dixon RA, Gonzales (2006) Plant cell culture, A Practical approach. Oxford University Press. 2nd Edition
6. Harborne JB (2008) Phytochemical Methods A Guide to Modern Techniques of Plant Analysis. Springer, New Delhi. 3rd Edition

CourseOutcomes:

After completion of the course the learners-

CO1: have got knowledge of plant tissue culture.

CO2: Learnt plant molecular farming and understood the biosynthetic pathways involved in the production of Secondary metabolites.

CO3: Understood the genetic engineering application in biotic and abiotic stress.

CO4: Understood the importance of plant secondary metabolites and their immense industrial applications.

Mapping of CO and PO for MBT 301

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	3	3	3	3	3	3	3	3	3	3	3	3
CO2	3	3	2	3	3	3	2	2	3	2	3	3	3	3	3
CO3	3	3	3	3	3	3	2	3	3	2	2	3	3	3	3
CO4	3	3	3	3	2	3	3	3	3	3	3	3	3	2	3

**Mapping Scale: 1 to 3 (3: Strong; 2: medium; 1: weak)

CourseCode:MBT-302

Subject: Animal

Biotechnology No.ofcredits: 4

L P
4 0

MaximumMarks:100

Theory

exam:75Sessional: 25

CourseObjectives: Students will learn about animal tissue culture, culture media, stem cell, Transgenic product, Gene editing tools.

UnitI

Introduction to animal cell and tissue culture, its advantages and limitations, Applications of animal cell and tissue culture. Basic techniques in animal cell culture: Disaggregation of tissue and setting up of primary culture, established cell line cultures, maintenance of cell culture, culture media and role of serum in cell culture, organ culture

UnitII

Biology and characterization of the cultured cells, measurement of growth, measurement of viability and cytotoxicity. Scale up of animal cell culture, cell cloning, cell synchronization and transformation

UnitIII

Stem cell cultures: Embryonic and adult stem cells, their isolation, culture and applications, animal cloning. Transgenic animals: Construction of transgenic animals, gene knockouts, ethical and biosafety considerations. Stem Cell Bank.

UnitIV

Animal cloning basic concept, cloning from embryonic cells and adult cells, Ethical, social and moral issues related to cloning, Transgenic manipulation of animal embryo and its applications, Transgenic animal production and application in expression of therapeutic proteins, biopharming, Gene editing, gene correction, gene silencing. Molecular markers linked to disease resistance genes, Application of RFLP in forensic, disease prognosis, genetic counselling and pedigree analysis.

Suggested Readings:

1. Amanda CD and Freshney, RI (2021) Freshney's Culture of Animal Cells: A Manual of Basic Techniques and Specialized Applications. John Wiley & Sons Publishers. 8th edition.
2. Das HK (2017) Textbook of biotechnology. Wiley Publisher. 5th edition.
3. Singh BD (2015) Biotechnology: Expanding Horizons. Kalyani Publishers. 4th edition.
4. Gupta PK (2020) Molecular Biology and Genetic Engineering. Rastogi Publication. 4th Reprint 1st edition.
5. Brown TA (2020) Gene Cloning and DNA Analysis: An Introduction. John Wiley & Sons. 8th edition.
6. Glick BR and Patten CL (2017) Molecular Biotechnology: Principles and Applications of Recombinant DNA. John Wiley & Sons. 5th edition

CourseOutcomes:

After completion of the course the learners-

CO1: Learn the animal

cell culture and establish a successful cell line repository independently.

CO2: characterized and authenticate a given cell line/culture.

CO3: Isolate and culture stem cell from a given sample.

CO4: Understood the basic knowledge of molecular methods used in animal biotechnology.

Mapping of CO and PO for MBT 302

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	3	3	3	3	3	3	3	3	3	3	3	3
CO2	3	2	3	3	3	3	2	3	3	3	2	3	3	3	3
CO3	3	3	2	3	3	3	2	3	3	3	3	3	3	3	3
CO4	3	3	3	3	2	3	3	3	3	3	3	3	3	2	3

**Mapping Scale: 1 to 3 (3: Strong; 2: medium; 1: weak)

CourseCode:MBT-303

Subject:

Immunology No.ofcr

edits: 4

L P

4 0

MaximumMarks:100

Theoryexam: 75

Sessional: 25

Course Objectives: This course includes a detailed description of the immune response made in humans to foreign antigens including microbial pathogens. A description of cells involved in the immune response either innate or acquired. How the immune system recognizes self from non-self. B and T cell maturation and specific responses.

UnitI

Cells and organs of immune system. Primary, secondary and tertiary lymphoid organs. Types of immunity - Innate and adaptive, Humoral and cell-mediated, Active and passive, PAMP: TLR, Clonal selection theory. Immunological memory, Antigens and immunogens, B and T cell epitopes; Haptens. Structure and functions of antibodies. Classes of immunoglobulins. CDRs, Valence, affinity and avidity. Antibody variants - Isotypes, allotypes and Idiotypes

UnitII

The immunoglobulin genes: organization and assembly; generation of immunological diversity; Allelic exclusion. Major histocompatibility complex (MHC): structure and organization of MHC. Antigen processing and antigen presentation. T cell Receptor: Superantigens. B cell activation and maturation. T cell development and activation. Cytotoxic T cell mediated killing. Complements system and mechanism of its fixation. Complement deficiencies. V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanisms and regulation

UnitIII

Immunological tolerance. Autoimmunity and associated disorders. Allergy and hypersensitivity, types of hypersensitivity. Transplantation immunology - Graft rejection, graft versus host reaction. Immunological responses to infectious diseases - viral, bacterial, protozoal. Immunosuppression - immunodeficiency diseases. Communicative Viral Diseases.

UnitIV

Role of cytokines, lymphokines and chemokines. Vaccine and its different types. Different types of Vaccines for COVID-19. Hybridoma Technology: Production of murine monoclonal antibodies (MoAbs) - Fusion strategies, HAT Selection; Strategies for production of human MoAbs - Humanization and antigenization of MoAbs - Chimeric, CDR-grafted

Suggested Readings:

1. Punt J, Stranford SA, Jones PP, and Judith AO (2019) *Kuby Immunology*. WH Freeman. 8th edition.
2. Abbas AK, Lichtman AH, and Pillai S (2016) *Cellular and Molecular Immunology*. Saunders. 9th edition.
3. Male DK, Brostoff J, Roth D, and Ivan R (2012) *Immunology*. Gower Medical Publishing London. 8th edition.
4. Gupta SK (2010) *Essentials of Immunology*. Arya Publication. 2nd edition.
5. Khan FH (2009) *The Elements of Immunology*. Pearson Education India. 1st edition.

CourseOutcomes:

After completion of the course the learners-

CO1-Understood the concept of innate and adaptive immunity.

CO2-Understood the various mechanisms that regulate immune responses and maintain tolerance.

CO3-Elucidated the reasons for immunization and awareness of different vaccination.

CO4-Understood the stages of transplantation response and success of various transplant procedures.

Mapping of CO and PO for MBT 303

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO2	2	3	2	3	3	3	2	2	3	3	3	2	3	3	3
CO3	3	3	3	2	3	3	2	3	3	3	3	3	2	3	3
CO4	3	3	3	3	2	3	3	3	3	3	3	3	3	2	3

**Mapping Scale: 1 to 3 (3: Strong; 2: medium; 1: weak)

CourseCode:MBT-304

MaximumMarks: 100

Theoryexam: 75

Sessional:25

Subject:

Genetics

No.of credits:4L P

4 0

CourseObjectives: To develop and demonstrate an understanding of the structure and function of genes and the organization of the human genome; the patterns of inheritance and clinical manifestations of genetic diseases; chromosomes, chromosomal abnormalities, and the clinical features of common chromosomal disorders.

UnitI

Mendelian vs. Non-Mendelian inheritance, monohybrid and dihybrid crosses, Mendelian Principles-Dominance, Segregation and Independent assortment. Extension of Mendelian principles: Codominance, Incomplete dominance, Multiple Allelism. Gene interactions-Epistasis, Collaboratory gene action, Duplicate genes, Complementary gene action, Complementation test. Pleiotropy. Phenocopy. Probability and Pedigree analysis. sex limited and sex influenced characters. Quantitative genetics: Polygenic inheritance, heritability and its measurements, QTL. Extrachromosomal Inheritance, Maternal effect.

UnitII

Microbial genetics: Methods of genetic transfers – transformation, conjugation, transduction and sexduction, mapping genes by interrupted mating, fine structure analysis of genes. Linkage maps, recombination, tetrad analysis (Ordered and Unordered Tetrad analysis), mapping with molecular markers, mapping by using somatic cell hybrids. Linkage Group

UnitIII

Cytogenetics: Chromosome: structure and nomenclature, centromere and telomere; Structural and numerical alterations of chromosomes: Deletion, duplication, Pericentric and Paracentric inversion, Inversion heterozygotes, Inversion homozygotes. Reciprocal and non-reciprocal translocation, Homozygotes as well as Heterozygote Translocants. Ploidy (Aneuploidy and Euploidy) and their genetic implications.

UnitIV

Mutation: Types, causes and detection, mutant types – lethal, conditional, Base substitution and frame shift Mutation. Biochemical, loss of function, Gain of function, Germinal versus Somatic mutants, Ames Test.

Epigenetics: Introduction, methylation, histone modifications.

Allele frequency, Gene Frequency, Hardy Weinberg Equilibrium

Suggested Readings:

1. Gardner EJ (2005) Principles of Genetics. John Wiley & Sons Ltd. 8th edition.
2. Tamarin RH (2017) Principles of Genetics. Tata McGraw-Hill Publishing Comp. Ltd. 7th edition.
3. Pierce BA (2016) Genetics – A conceptual approach. WH Freeman Company. 6th edition.
4. Snustad DP and Simmons MJ (2015) Principles of Genetics. John Wiley and Sons. 7th edition.
5. Hartland Jones (2017) Genetics-Principles and Analysis. Jones & Bartlett. 9th edition.

Course Outcomes:

After completion of the course the learners-

CO1-

Understood the building block for genetics i.e., life cycles of model organisms, basic genetic experiments, polyploidy, and QTL.

CO2-

Learned the organization of genome and specialized chromosomes, chromosomal theory of inheritance, linkage, inheritance modes in nature, maternal inheritance, crossing over, and recombination.

CO3- Understood the important hereditary diseases, their inheritance patterns, and pedigree analysis

CO4- Understood the significance and impact of mutations.

Mapping of CO and PO for MBT 304

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO2	2	3	3	3	3	3	2	2	3	2	3	3	2	3	3
CO3	3	2	3	3	3	3	2	3	3	3	3	3	3	3	3
CO4	3	3	3	3	2	3	3	3	3	3	3	2	3	2	3

**Mapping Scale: 1 to 3 (3: Strong; 2: medium; 1: weak)

CourseCode-MBT-305**Subject: Lab Course-I (Based on MBT 301-302)No.ofCredits-3****L P**
0 6

1. To know the requirement for the setting up of plant/animal tissue culture laboratory.
2. To understand the function and working of equipment used in plant/animal tissue culture laboratory.
3. To perform cleaning and surface sterilization of glassware, explant and Laminar Air Flow chamber.
4. To perform subculturing of selected plant under *in vitro* conditions.
5. To establish cell suspension culture from friable callus.
6. To prepare solid and liquid MS media.
7. To culture excised leaves and shoot tips
8. To perform cell counting using Nauber's chamber/hemocytometer.
9. To perform cell viability assay using trypan blue dye.
10. To perform cell cloning by dilution method.
11. To perform sub culturing / splitting of monolayer culture.
12. To perform Hoechst/PI staining to detect apoptosis.
13. To preserve and store cell lines using DMSO/FBS.
14. To isolate metagenomic DNA from soil samples / water samples.
15. To perform polymerase chain reaction (PCR) amplification of plant/metagenomic DNA with 16S/18S primers/ gene specific primers.

A minimum of eight practicals should be done from the above-mentioned list**Addition or deletion of the lab experiments can be done as per the availability of resources in lab.**

At the end of laboratory course, learners-

CO1-Understood the basic infrastructure requirements in a tissue culture lab**CO2**-Performed plant and animal cell culture experiments**CO3**-Demonstrated various techniques used in cell culture**Mapping of CO and PO for MBT 305**

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	PO2	PO3	PO4
CO1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	2	3	2	3	3	3	3	2	3	3	3
CO3	3	3	3	3	3	3	2	3	3	3	3	3	2	3	3

**Mapping Scale: 1 to 3 (3: Strong; 2: medium; 1: weak)

CourseCode-MBT-306

Subject: Lab Course-II (Based on MBT 303-304)No.ofCredits-3

L P
0 6

1. To perform experiment using ammonium sulphate precipitation of antibodies in serum.
2. To perform experiment on the preparation of antigen-adjuvant (FCA) emulsion.
3. To perform experiment on the collection of blood from mice and separation of serum.
4. To perform experiment on antibody purification from the serum collected from immunized mice: affinity purification/chromatography.
5. To perform experiment on double diffusion and Immune-electrophoresis
6. To perform experiment on radial immune diffusion
7. To perform experiment of Band analysis of different types of plasma antibodies by SDS-PAGE
8. To perform agglutination Reaction: a) Tube Agglutination Reaction b) Slide Agglutination Reaction c) Indirect Agglutination Inhibition Reaction
9. To perform experiment for Identification of histological slides of lymphoid tissue - Spleen, thymus, lymph node and bone marrow
10. To perform experiment of Mitosis- Onion root tip squash preparation- Preparation of Karyotypes, Determination of Mitotic index.
11. To perform experiment on Mendelian Inheritance and gene interactions using suitable examples/ seeds
12. To perform experiment on study of Linkage, Recombination, gene mapping using the available data
13. To perform experiment of centromere mapping by tetrad analysis
14. Analysis of pattern of inheritance of given pedigree.
15. Calculation of recombination frequency
16. To perform experiment on Bacterial genome mapping by interrupted conjugation method
17. Calculation of co-transformation and co-transduction frequency
18. Calculation of deviation in phenotypic ratios of different intergenic gene interactions
19. To perform experiment on comparison of ploidy level with respect to given example.

**A minimum of eight practicals should be done from the above-mentioned list.*

**Addition or deletion of the lab experiments can be done as per the availability of resources in lab.*

Skill Developed-

At the end of laboratory course, learners-

CO1-understood the basic Immunological aspects to be performed in the laboratory.

CO2-learnt to analyze genetic problems and will be able to approach a research problem statistically.

CO3-understood the centromere mapping as well as to calculate phenotypic ratios of different gene interactions

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	2	3	3	3	3	3	3	3	3

**Mapping Scale: 1 to 3 (3: Strong; 2: medium; 1: weak)

Seminar:

Seminar will be of 30-45 minute duration during which the presentation will be followed by questions session by the audience comprising of faculty and students. Every student shall be required to submit the topic of his/her seminar in consultation with the Head of the Department/Faculty members/stu dent advisors well in advance so that the same may be displayed on the notice board. The presenter has to write an Abstract to be distributed during Seminar in addition to two copies of write-up giving relevant details of the background of the subject, methods used and references/ List of sources from where the material for presentation has been collected.

J. C. Bose University of Science and Technology, YMCA, Faridabad

(Established by Haryana State Legislative Act No. 21 of 2009 & Recognized by UGC Act 1956 u/s 22)
Accredited 'A' Grade by NAAC

DEPARTMENT OF LIFE SCIENCES

Program M.Sc. (Biotechnology)

Scheme Course Index of the Year 2020-21 (BOS Dated 12/04/2021)

Mapping of the Courses with the Employability/Entrepreneurship/Skill Development

M.Sc. Biotechnology Semester III (Program Code: 755)

Sr. No.	Course Code	Course Name	Employability	Entrepreneurship	Skill Development
1	MBT-301	PlantBiotechnology	√	√	√
2	MBT-302	AnimalBiotechnology	√	√	√
3	MBT-303	Immunology	√		√
4	MBT-304	Genetics	√		√
5	MBT-305	LabCourse-I(Basedon MBT301-302)	√		√
6	MBT-306	LabCourse-II(BasedonMBT303-304)	√	√	√
7	MBT-307	Seminar	√	√	√
8	XXX	OEC-Research Methodology	√		√

SEMESTER-IV										
Sr. No.	Course Code	Subject	Teaching Hours perweek			MaximumMarks		Credits	Category Code	
			L	T	P	Internal	External			
1	MBT-401	Enzymology and Bioprocess Engineering	4			25	75	100	4	DCC
2	MBT-402	Environmental Biotechnology	4			25	75	100	4	DCC
3	MBT-403	Genomics, Proteomics and Metabolomics	4			25	75	100	4	DCC
4	MBT-404	Lab Course - I (Based on MBT401)			6	30	70	100	3	DCC
5	MBT-405	Lab Course - II (Based on MBT402-403)			6	30	70	100	3	DCC
6	MBT-406	Project Report	0	0	12	30	70	100	6	
Total							600	24		

CourseCode: MBT401

Subject:EnzymologyandBioprocessEngineering

No.ofcredits: 4

**L P
4 0**

Maximum Marks:100

Theoryexam:75

Sessional:25

Course Objectives- The major learning objective of the course is to understand the theories of enzyme kinetics, the mechanisms of enzyme catalysis, and the mechanisms of enzyme regulation in the cell. As well as to provide the basic principles of reactor design for bioprocess and biotechnology applications.

UnitI:

Enzymology: Introduction, General characteristics of enzymes, Activation energy, Coupled reactions, Active site and its importance, Thermodynamics and Equilibrium; Enzyme activity; Specific activity and Units; Isozymes; Ribozymes; Zymogens; Abzymes; Classification and nomenclature of enzymes.

UnitII:

Enzyme kinetics: Significance; Rapid Equilibrium and Steady State approach, Henry Michaelis-Menten's and Haldane equations, Significance of K_m , Catalytic efficiency and turnover number; Kinetic perfection. Order of kinetics. Methods of plotting enzyme kinetics data: Lineweaver-Burk, Hanes-Woolf, Woolf Augustinsson-Hofstee, Eadie-Scatchard; Direct linear plot; Advantages and disadvantages; Integrated form of the Henry-Michaelis-Menten equation; Effect of pH and temperature

UnitIII:

Introduction to concepts of bioprocess engineering, Overview of bioprocesses with their various components, Isolation, screening and maintenance of industrially important microbes; Strain improvement for increased yield and other desirable characteristics, Microbial growth and death kinetics with respect to fermenters, optimization of bioprocesses, yield coefficient, doubling time, specific growth rate, metabolic and biomass productivities, effect of temperature, pH and salt concentration on product formation. Basics of Metabolic Engineering.

UnitIV:

Concepts of basic mode of fermentation processes Bioreactor designs; Types of fermenters; Concepts of basic modes of fermentation-

Batch, fed batch and continuous; Solid substrate, surface and submerged fermentation; Fermentation media; Design and types of culture/production vessels-Batch, Fed batch, CSTBR, airlift, packed bed and bubble column fermenter; Impeller, Baffles, Sparger.

Upstream and downstream processing: Media formulation; Inocula development and Sterilization; Aeration and agitation in bioprocess; Measurement and control of bioprocess parameters; Scale up and scale down process. Bio separation techniques.

Suggested Readings:

1. Cook PF, Cleland WW (2007) Enzyme Kinetics and Mechanism, Garland Science Publishing, London, England and New York, USA. 1st edition.
2. Palmer T and Bonner P (2007) Enzymes: Biochemistry, Biotechnology, Clinical Chemistry,

Affiliated East-West Press, England. 2nd edition

3. Price NC and Stevens L (2000) *Fundamentals of Enzymology: Cell and molecular biology of catalytic proteins*. Oxford University Press. 3rd edition.
4. Jackson AT (1991) *Bioprocess Engineering in Biotechnology*, Prentice Hall, Engelwood Cliffs, US A. 1st edition.
5. Kargi F and Shuler ML (2002). *Bioprocess Engineering: Basic concepts*. Prentice Hall, USA. 2nd edition.
6. Stanbury P, Whitaker A and Hall SJ (2016) *Principles of Fermentation Technology*, Pergamon press, Oxford, United Kingdom. 3rd edition.
7. Mansi EMTEL, Bryce C FA (2012). *Fermentation Microbiology and Biotechnology*. Taylor & Francis Ltd. United Kingdom. 3rd Edition.

Course Outcomes:

After completion of the course the learners-

CO1 - Understood how enzymes work and how this is affected by the structure of enzymes and by the reaction conditions. Present unit operations together with fundamental principles for basic methods in production techniques for biologically based products.

CO2 - Described the thermodynamic basis of enzyme reactions and enzyme kinetics. Upon completion of the course the student will recognize different ways to produce and purify enzymes and described different industrial applications of enzymes.

CO3 - Understood methods related to biotechnological processes

CO 4 - Understood to apply different biotechnological methods used in the recombinant protein production, in fermentation processes and in protein purification

Mapping of CO and PO for MBT 401

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	2	2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	2	3	3	3	3	3	3	3	3
CO4	3	3	3	3	2	3	3	3	3	3	3	3	3	2	3

**Mapping Scale: 1 to 3 (3: Strong; 2: medium; 1: weak)

CourseCode: MBT402

Subject:EnvironmentalBiotechnology

No.ofcredits: 4

L P

4 0

MaximumMarks: 100

Theoryexam:75

Sessional:25

CourseObjectives: The course explains the application of biotechnology in environment.

UnitI

overview, concept, scope and market biological control of air pollution. Bacterial examination of water for potability. Solid waste: Sources and management (composting, vermicomposting and methane production). Wastewater characterization: COD, BOD

UnitII

Measurement of water pollution, sources of water pollution, Waste water collection, Waste water. Biological wastewater treatment-

.Inorganic constituents, solids, biological components. Principles and aims of biological wastewater treatment processes, Biochemistry and microbiology of inorganic phosphorus and nitrogen removal.

Anaerobic Processes: Anaerobic digestion, anaerobic filters, Up flow anaerobic sludge blanket reactors.

UnitIII

Treatment schemes for wastewater of dairy, distillery, tannery, sugar, antibiotic industries. Suspended growth technologies: Activated sludge, oxidation ditches, waste stabilization ponds etc. Fixed film technologies: Trickling filters, rotating biological contactors, fluidized bed etc. Anaerobic wastewater treatment systems: RBC, UASB, Anaerobic filters. Electronic waste, Biomedical waste and disposal of these wastes.

UnitIV

Microbiology of degradation of Xenobiotics in Environment Ecological considerations, decay behavior & degradative plasmids; Hydrocarbons, substituted hydrocarbons, oil, pollution, surfactants, pesticides, Bioremediation of contaminated soils and waste land. Biopesticides in integrated pest management. Solid wastes; sources and management (composting, vermiculture and methane production).

Environmental Monitoring: Biosensors for environmental applications, BOD sensor, ammonia sensor, Nitrite sensor and sulphite ion sensor. Indicator organisms: Safety indicators and Quality indicators

SuggestedReadings:

1. G M Evans, Furlong JC (2003) Environmental Biotechnology-Theory and Applications, John Wiley & Sons. 1st edition
2. Hans-Joachim Jordening, Josef Winter (2005) Environmental Biotechnology: Concepts and Applications, John-Wiley and Sons. 1st edition
3. Shekhar Thakur Indu (2011) Environmental Biotechnology: Basic concepts and Applications, IK International Pvt Ltd. 2nd edition
4. Scragg AH (1999) Environmental Biotechnology, Longman. 2nd edition
5. Evans GG, Furlong, J. (2011) Environmental biotechnology: theory and application. John Wiley & Sons. 2nd edition

CourseOutcomes:

After completion of the course the learners-

CO1-Understood and assimilated the concepts and specific terminology of environmental biotechnology

CO2-Understood to detect, prevent and remediate the emission of pollutants into the environment in a number of ways

CO 3- Obtained knowledge on basic principles and technologies of decontamination of persistent organic pollutants (dangerous contaminants of the environment) mainly by means of the biological approaches i.e. using bioremediation etc

CO4-

Learned about the principles and techniques underpinning the application of biosciences to the environment.

Mapping of CO and PO for MBT 402

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	2	3	3	3	3	3	3	3	3	3	3	3
CO2	3	2	3	3	2	3	2	3	2	3	3	3	3	3	3
CO3	3	3	2	3	3	3	2	3	3	3	3	2	3	2	3
CO4	3	3	3	3	2	3	3	3	3	3	3	3	3	2	3

**Mapping Scale: 1 to 3 (3: Strong; 2: medium; 1: weak)

CourseCode: MBT403

Subject:Genomics,ProteomicsandMetabolomics

No.ofcredits: 4

**L P
4 0**

MaximumMarks:100

Theoryexam: 75

Sessional:25

Course Objective-The course aims to appraise the students to the vital concepts of technologiespertinent to Genomics and Proteomics, their applications and demonstrate skills to apply theknowledgein scientificqueries.

UnitI:

Introductorygenomics,IntroductiontoGenomics,Anatomyofprokaryoticand eukaryoticgenome, content of genome, C-value paradox, Cot curve analysis, repetitive DNA, tools to study genomeAppliedGenomics-

Strategiesformajorgenomesequencingprojects,approachesandassemblymethods,NGS methods and advantages, geneanalysis and annotation.

UnitII:

TranscriptomicsandexpressionprofilingGenomeexpressionanalysis, RNAcontentandprofiling,genetic mapping, Microarray (cDNAand proteinmicroarray)

Introductoryproteomics-Importanceofproteomics,strategiesinanalysisofproteome:2-DPAGE,Mass spectrometry, Protein sequencing method (Edman degradation, MALDI TOF/TOF). Proteinsolubilityand interaction with solvents and solutes,activity of proteins.

UnitIII:

Quantitationproteomics-ICAT,SILAC,iTRAQ,applicationsofquantitationproteomics. Proteomic profiling for host-pathogen interaction, Understanding proteomics for post-translationalmodifications. Applicationofproteomicsfordrugdiscovery. Biomarkersanddrugtargetsidentification. Validation ofdrugtargetsandassessment of its toxicology

Unit-IV:

Introductiontometabolomicsworld. Metabolicfingerprinting, andmetabolicprofiling. Biotechnologica lpotentials ofmetabolomics. Proteomicsapproaches inmetabolomics.

Applicationforcellularmetabolomicsformetabolicpathwaystructure.

Sizeofmetabolome,metaboliteidentification, pathwayidentificationandpathwayintegration. Computationalapproachesformetaboliteidentificationand translationofresults intobiologicalknowledge.

SuggestedReadings:

1. PalzkillT(2002)Proteomics.KluwerAcademicPublishers,New York,USA.1stEdition
2. Kambhampati D (2005) Protein Microarray Technology. Wiley-VCH Verlag GmbHWeinheim,Germany. 1st Edition
3. LeskAM(2007) IntroductiontoGenomics. OxfordUniversitypress,UK.3rdEdition
4. Villas-Boas SG (2007) Metabolome Analysis: An Introduction. Wiley-Blackwell, USA. 1stEdition
5. Nikolau BJ, Wurtele ES (2007) Concepts in Plant Metabolomics. Springer, USA. 1stEdition
6. GibsonG, MuseSV(2009) APrimer ofGenome Science. Sinauer Associates. 3rdEdition
7. BrownTA(2017) Genome.Garland SciencePublishers.4th Edition

- **CourseOutcomes:**
- Afterthesuccessfulcompletionofthiscourse learners-
- **CO1-**
Understoodthecrucialconceptsandtechniquesappliedingenomics,transcriptomicsandproteomics.
- **CO2**-Learntaboutthecomplexityofgenome/proteomestructuralandfunctionalorganization.
- **CO3-**
Formulateandassessexperimentaldesignforsolvingtheoreticalandexperimentalproblemsin Genomics and Proteomics fields
- **CO4**-Understoodthe conceptofmetabolomicsanditsapplicationinscience

Mapping of CO and PO for MBT 403

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	PSO4
CO1	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO2	3	3	2	3	3	3	2	3	3	3	3	3	3	3	3
CO3	2	3	3	3	3	3	2	3	3	3	3	3	3	3	2
CO4	3	3	3	3	2	2	3	3	3	3	3	3	3	2	3

**Mapping Scale: 1 to 3 (3: Strong; 2: medium; 1: weak)

CourseCode:MBT 404

Subject: Lab Course - I (Based on MBT

401)Numberof Credits: 3

L P

0 6

1. To perform the experiment of extraction and analysis of Specific activity of peroxidase
2. To determine of K_m , V_{max} ,
3. To determine K_m for an enzyme.
4. To determine effect of temperature on the stability and activity of the enzyme.
5. To perform experiment of isolation of enzymes from plants/bacteria.
6. Estimation of enzyme activity and ammonium sulphate fractionation/centrifugation-based size fractionation.
7. To perform experiment of Enzyme immobilization.
8. Isolation of industrially important microorganisms for microbial processes (citric/lactic/alpha amylase) and improvement of strain for increase yield by mutation.
9. To determine of Thermal Death Point (TDP) and Thermal Death Time (TDT) of microorganisms for design of a sterilizer.
10. To determine growth curve of a supplied microorganism and also determine substrate degradation profile.
11. Extraction of Citric acid/Lactic acid by salt precipitation.
12. To monitor of dissolved oxygen during aerobic fermentation.
13. To preserve of industrially important bacteria by lyophilization.
14. To perform experiment on product concentration by vacuum concentrator

**A minimum of eight practical's should be done from the above-mentioned list.*

**Addition or deletion of the lab experiments can be done as per the availability of resources in lab.*

Skill Developed-

At the end of laboratory course, learners-

CO1-understood the basic techniques for enzyme kinetics and enzymes isolation and enzyme immobilization

CO2-learnt to setup a basics of fermentation technology steps

CO3-understood the modeling and simulation of bioprocesses so as to reduce costs and to enhance the quality of products and systems.

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	3	3	3	3	3	3	3	3	3	3	2	3
CO2	3	3	3	3	3	3	2	3	2	3	3	3	2	3	3
CO3	3	3	3	3	3	3	2	2	3	3	3	3	3	3	2

**Mapping Scale: 1 to 3 (3: Strong; 2: medium; 1: weak)

CourseCode:MBT 405

Subject: Lab Course - II (Based on MBT 402-403)
NumberofCredits: 3

L P
0 6

1. To detect coliforms for determination of the purity of potable water
2. To determine of total dissolved solids of water
3. To determine dissolved oxygen concentration of water sample.
4. To determine biochemical oxygen demand (BOD) of a sewage sample.
5. To determine of chemical oxygen demand (COD) of sewage sample
6. To determine bacterial numbers in sample by Standard plate count technique
7. To isolate xenobiont degrading bacteria by selective enrichment techniques
8. Test for degradation of aromatic hydrocarbons by bacteria
9. To estimate heavy metals in water/soil by spectrophotometry
10. To estimate nitrate in drinking water Study on biogenic methane production in different habitats
11. To perform experiment of spectrophotometric determination of DNA
12. To perform experiment for differential gene expression of given tissue/sample
13. To precipitate protein from a solution by salting out method
14. To estimate protein profiling of given biological sample
15. To perform 2D gel electrophoresis
16. To perform experiment on Coomassie/ silver staining of protein gel
17. To perform experiment on Protein-DNA interaction study by Electromobility shift assay

**A minimum of eight practicals should be done from the above-mentioned list.*

**Addition or deletion of the lab experiments can be done as per the availability of resources in lab.*

Skill Developed-

At the end of laboratory course, learners-

CO1- learnt about environmental quality evaluation, monitoring, and remediation of contaminated environments

CO2- learnt to evaluate the potential of biodegradation of organic pollutants, taking microbial and physical/chemical environments,

CO3 familiar with the tools and techniques of genome and transcriptome analysis and gene expression regulation, production and characterization of recombinant proteins.

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	2	3	3	3	3	3	3	3	3	3	3	2
CO2	3	3	3	3	3	3	2	3	3	3	2	3	2	1	3
CO3	3	3	2	3	3	3	2	3	3	3	2	3	2	3	3

**Mapping Scale: 1 to 3 (3: Strong; 2: medium; 1: weak)

CourseCode:MBT-406

Subject: Project

ReportNo.of credits:6

CourseObjectives:

The objective of this course is to provide students with a hands-on training in specialized areaofsciences

Contents:

- The student will be reading and analysing the published information in the chosen areaof science under direct mentoring of a faculty member and will participate in researchactivity.
- PreparationandsubmissionofReviewarticle

CourseLearningOutcomes:

Studentswill acquirethefollowing:

CO1: Knowledgeontechniquesandtools of research

CO2: Quantitativeandqualitative dataanalysis

CO3: Analysisandinterpretationofdata in theperspective ofexistingknowledge

DEPARTMENT OF LIFE SCIENCES**Program M.Sc. (Biotechnology)****Scheme Course Index of the Year 2020-21 (BOS Dated 12/04/2021)****Mapping of the Courses with the Employability/Entrepreneurship/Skill Development****M.Sc. Biotechnology Semester IV (Program Code: 755)**

Sr. No .	Course Code	Course Name	Employability	Entrepreneurship	Skill Development
1	MBT-401	Enzymology and Bioprocess Engineering	√	√	√
2	MBT-402	Environmental Biotechnology	√	√	√
3	MBT-403	Genomics, Proteomics and Metabolomics	√	√	√
4	MBT-404	Lab Course - I (Based on MBT401)	√		√
5	MBT-405	Lab Course - II (Based on MBT402-403)	√	√	√
6	MBT-406	Project Report	√	√	√

