

Name of the faculty : Dr. Reena Garg

Class/Discipline : M.Sc. (Mathematics) III sem

Subject: Partial Differential Equations

Lecture Plan Duration : 12 weeks (July 2025 - Dec.2025)

Work load Lecture: 04/week

Week	Theory	
	Lecture Day	Topic
I	I	Method of Separation of variables to solve B.V.P. associated with one dimensional heat equation
	II	Continue.....
	III	Heat equation in semi-infinite regions.
	IV	Heat equation in infinite regions.
II	I	Continue.....
	II	Solution of three dimensional Laplace equation in Cartesian coordinates
	III	Solution of three dimensional Laplace equation in Cylindrical coordinates
	IV	Continue.....
III	I	Solution of three dimensional Laplace equation in Spherical coordinates
	II	Continue.....
	III	Solution of Wave equation in two dimensional
	IV	Continue.....
IV	I	Solution of wave equation in three dimensional (Cartesian , Cylindrical, Spherical)
	II	Continue.....
	III	PDE OF k th Order : Definition, examples and classifications
	IV	Continue.....
V	I	Initial value problems, Transport equations: definition
	II	Continue.....
	III	Solution of homogeneous transport equations
	IV	Solution of non-homogeneous transport equations

VI	I	Continue.....
	II	Laplace Equation, Fundamental solution of Laplace equation
	III	Continue.....
	IV	Harmonic function , Mean Value formula for Harmonic function
VII	I	Continue.....
	II	Green's formula, Corrector function (definition only)
	III	Green's function and its derivation
	IV	Continue.....
VIII	I	Representation formula using Green's function, Symmetry of Green's function
	II	Continue.....
	III	Energy methods : uniqueness, Dirichlet Principle
	IV	Continue.....
IX	I	Heat Equations : Fundamental solution of Heat equation
	II	Continue.....
	III	Uniqueness of Heat equation :Energy methods
	IV	Continue.....
X	I	Wave equation – Physical interpretation
	II	Solution for one dimensional wave equation, Reflection method
	III	Continue.....
	IV	derivation of Euler-Poisson Darboux equation
XI	I	Continue.....
	II	Kirchhoff's and Poisson's formulas (for n=2,3 only)
	III	Continue.....
	IV	Continue.....
XII	I	Solution of non-homogeneous wave equation for n=1,3
	II	Continue.....
	III	Energy method: Uniqueness of solution
	IV	Continue.....

Two weeks are for sessionals.

Total 14 weeks.

Name of the Teacher: Dr. Reena Garg

Class/Discipline: B.Tech(ECE/ENC) 1st semester

Subject: Calculus and Linear Algebra(BSC-103D)

Lecture Plan Duration: 12 weeks(July,2025-Dec, 2025)

Work load :4L/week

Week	Theory	
	Lecture Day	Topic
I	I	Evolutes and involutes
	II	Evaluation of definite and improper integrals
	III	Continue.....
	IV	Beta and Gamma functions and their properties;
II	I	Questions based on it
	II	Applications of definite integrals to evaluate surface areas and volumes of revolutions
	III	Continue.....
	IV	Rolle's Theorem
III	I	Mean value theorems
	II	Taylor's and Maclaurin theorems with remainders
	III	Continue.....
	IV	Indeterminate forms and L'Hospital's rule
IV	I	Maxima and minima
	II	Questions based on it
	III	Continue.....
	IV	Convergence of sequence and series
V	I	tests for convergence
	II	Power series
	III	Taylor's series
	IV	series for exponential
VI	I	trigonometric and logarithm functions
	II	Fourier series: Half range sine and cosine series,
	III	Questions based on it
	IV	Parseval's theorem
VII	I	Limit, continuity and partial derivatives,
	II	Continue.....
	III	directional derivatives, total derivative

	IV	Questions based on it
VIII	I	Tangent plane and normal line;
	II	Questions based on it
	III	Maxima, minima for two variables
	IV	Saddle points
IX	I	Method of Lagrange multipliers
	II	Continue.....
	III	Gradient, curl
	IV	Divergence
X	I	Inverse and rank of a matrix
	II	Continue.....
	III	rank-nullity theorem
	IV	Continue.....
XI	I	System of linear equations
	II	Symmetric, skew- symmetric
	III	Continue.....
	IV	orthogonal matrices
XII	I	Determinants ,Orthogonal transformation
	II	Eigenvalues and eigenvectors
	III	Diagonalization of matrices
	IV	Cayley-Hamilton Theorem

Two weeks are for sessionals.

Total 14 weeks.